Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
iScience ; 27(4): 109569, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38623329

RESUMEN

Preeclampsia (PE) is a hypertensive pregnancy disorder with increased risk of maternal and fetal morbidity and mortality. Abnormal extravillous trophoblast (EVT) development and function is considered to be the underlying cause of PE, but has not been previously modeled in vitro. We previously derived induced pluripotent stem cells (iPSCs) from placentas of PE patients and characterized abnormalities in formation of syncytiotrophoblast and responses to changes in oxygen tension. In this study, we converted these primed iPSC to naïve iPSC, and then derived trophoblast stem cells (TSCs) and EVT to evaluate molecular mechanisms underlying PE. We found that primed (but not naïve) iPSC-derived PE-EVT have reduced surface HLA-G, blunted invasive capacity, and altered EVT-specific gene expression. These abnormalities correlated with promoter hypermethylation of genes associated with the epithelial-mesenchymal transition pathway, specifically in primed-iPSC derived PE-EVT. Our findings indicate that abnormal epigenetic regulation might play a role in PE pathogenesis.

2.
Am J Obstet Gynecol ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38580043

RESUMEN

BACKGROUND: SARS-CoV-2 infection during pregnancy is associated with an increased risk for stillbirth, preeclampsia, and preterm birth. However, this does not seem to be caused by intrauterine fetal infection because vertical transmission is rarely reported. There is a paucity of data regarding the associated placental SARS-CoV-2 histopathology and their relationship with the timing and severity of infection. OBJECTIVE: This study aimed to determine if maternal SARS-CoV-2 infection was associated with specific patterns of placental injury and if these findings differed by gestational age at time of infection or disease severity. STUDY DESIGN: A retrospective cohort study was performed at the University of California San Diego between March 2020 and February 2021. Placentas from pregnancies with a positive SARS-CoV-2 test were matched with 2 sets of controls; 1 set was time-matched by delivery date and sent to pathology for routine clinical indications, and the other was chosen from a cohort of placentas previously collected for research purposes without clinical indications for pathologic examination before the SARS-CoV-2 outbreak. Placental pathologic lesions were defined based on standard criteria and included maternal and fetal vascular malperfusion and acute and chronic inflammatory lesions. A bivariate analysis was performed using the independent Student t test and Pearson chi-square test. A logistic regression was used to control for relevant covariates. Regions of SARS-CoV-2-associated villitis were further investigated using protein-based digital spatial profiling assays on the GeoMx platform, validated by immunohistochemistry, and compared with cases of infectious villitis and villitis of unknown etiology. Differential expression analysis was performed to identify protein expression differences between these groups of villitis. RESULTS: We included 272 SARS-CoV-2 positive cases, 272 time-matched controls, and 272 historic controls. The mean age of SARS-CoV-2 affected subjects was 30.1±5.5 years and the majority were Hispanic (53.7%) and parous (65.7%). SARS-CoV-2 placentas demonstrated a higher frequency of the 4 major patterns of placental injury (all P<.001) than the historic controls. SARS-CoV-2 placentas also showed a higher frequency of chronic villitis and severe chronic villitis (P=.03 for both) than the time-matched controls, which remained significant after controlling for gestational age at delivery (adjusted odds ratio, 1.52; 95% confidence interval, 1.01-2.28; adjusted odds ratio, 2.12; 95% confidence interval, 1.16-3.88, respectively). Digital spatial profiling revealed that programmed death-ligand 1 was increased in villitis-positive regions of the SARS-CoV-2 (logFC, 0.47; adjusted P value =.002) and villitis of unknown etiology (logFC, 0.58; adjusted P value =.003) cases, but it was conversely decreased in villitis-positive regions of the infectious villitis group (log FC, -1.40; adjusted P value <.001). CONCLUSION: Chronic villitis seems to be the most specific histopathologic finding associated with SARS-CoV-2 maternal infection. Chronic villitis involves damage to the vasculosyncytial membrane of the chorionic villi, which are involved in gas and nutrient exchange, suggesting potential mechanisms of placental (and perhaps neonatal) injury, even in the absence of vertical transmission. Surprisingly, changes in protein expression in SARS-CoV-2-associated villitis seem to be more similar to villitis of unknown etiology than to infectious villitis.

3.
Glia ; 72(5): 916-937, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38372375

RESUMEN

Schwann cells (SCs) undergo phenotypic transformation and then orchestrate nerve repair following PNS injury. The ligands and receptors that activate and sustain SC transformation remain incompletely understood. Proteins released by injured axons represent important candidates for activating the SC Repair Program. The low-density lipoprotein receptor-related protein-1 (LRP1) is acutely up-regulated in SCs in response to injury, activating c-Jun, and promoting SC survival. To identify novel LRP1 ligands released in PNS injury, we applied a discovery-based approach in which extracellular proteins in the injured nerve were captured using Fc-fusion proteins containing the ligand-binding motifs of LRP1 (CCR2 and CCR4). An intracellular neuron-specific protein, Protein Kinase C and Casein Kinase Substrate in Neurons (PACSIN1) was identified and validated as an LRP1 ligand. Recombinant PACSIN1 activated c-Jun and ERK1/2 in cultured SCs. Silencing Lrp1 or inhibiting the LRP1 cell-signaling co-receptor, the NMDA-R, blocked the effects of PACSIN1 on c-Jun and ERK1/2 phosphorylation. Intraneural injection of PACSIN1 into crush-injured sciatic nerves activated c-Jun in wild-type mice, but not in mice in which Lrp1 is conditionally deleted in SCs. Transcriptome profiling of SCs revealed that PACSIN1 mediates gene expression events consistent with transformation to the repair phenotype. PACSIN1 promoted SC migration and viability following the TNFα challenge. When Src family kinases were pharmacologically inhibited or the receptor tyrosine kinase, TrkC, was genetically silenced or pharmacologically inhibited, PACSIN1 failed to induce cell signaling and prevent SC death. Collectively, these studies demonstrate that PACSIN1 is a novel axon-derived LRP1 ligand that activates SC repair signaling by transactivating TrkC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Axones , Células de Schwann , Animales , Ratones , Ratas , Supervivencia Celular , Células Cultivadas , Ligandos , Ratas Sprague-Dawley , Proteínas Tirosina Quinasas Receptoras/metabolismo , Células de Schwann/metabolismo , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/farmacología , Proteínas Recombinantes
4.
Neuron ; 111(24): 4006-4023.e10, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38128479

RESUMEN

Phosphorylation of α-synuclein at the serine-129 site (α-syn Ser129P) is an established pathologic hallmark of synucleinopathies and a therapeutic target. In physiologic states, only a fraction of α-syn is phosphorylated at this site, and most studies have focused on the pathologic roles of this post-translational modification. We found that unlike wild-type (WT) α-syn, which is widely expressed throughout the brain, the overall pattern of α-syn Ser129P is restricted, suggesting intrinsic regulation. Surprisingly, preventing Ser129P blocked activity-dependent synaptic attenuation by α-syn-thought to reflect its normal function. Exploring mechanisms, we found that neuronal activity augments Ser129P, which is a trigger for protein-protein interactions that are necessary for mediating α-syn function at the synapse. AlphaFold2-driven modeling and membrane-binding simulations suggest a scenario where Ser129P induces conformational changes that facilitate interactions with binding partners. Our experiments offer a new conceptual platform for investigating the role of Ser129 in synucleinopathies, with implications for drug development.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Humanos , alfa-Sinucleína/metabolismo , Fosforilación , Enfermedad de Parkinson/metabolismo , Serina/metabolismo
5.
Placenta ; 144: 13-22, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37949031

RESUMEN

INTRODUCTION: Mortality from preeclampsia (PE) and PE-associated morbidities are 3-to 5-fold higher in persons of African ancestry than in those of Asian and European ancestries. METHODS: To elucidate placental contribution to worse PE outcomes in African ancestry pregnancies, we performed bulk RNA sequencing on 50 placentas from persons with severe PE (sPE) of African (n = 9), Asian (n = 18) and European (n = 23) ancestries and 73 normotensive controls of African (n = 10), Asian (n = 15) and European (n = 48) ancestries. RESULTS: Previously described canonical preeclampsia genes, involved in metabolism and hypoxia/angiogenesis including: LEP, HK2, FSTL3, FLT1, ENG, TMEM45A, ARHGEF4 and HTRA1 were upregulated sPE versus normotensive placentas across ancestries. LTF, NPR3 and PHYHIP were higher in African vs. Asian ancestry sPE placentas. Allograft rejection/adaptive immune response genes were upregulated in placentas from African but not in Asian or European ancestry sPE patients; IL3RA was of particular interest because the patient with the highest placental IL3RA expression, a person of African ancestry with sPE, developed postpartum cardiomyopathy, and was the only patient out of 123, that developed this condition. Interestingly, the sPE patients with the highest IL3RA expression among persons of Asian and European ancestries developed unexplained tachycardia peripartum, necessitating echocardiography in the European ancestry patient. The association between elevated placental IL3RA levels and unexplained tachycardia or peripartum cardiomyopathy was found to be significant in the 50 sPE patients (p = .0005). DISCUSSION: High placental upregulation of both canonical preeclampsia and allograft rejection/adaptive immune response genes may contribute to worse PE outcomes in African ancestry sPE patients.


Asunto(s)
Placenta , Preeclampsia , Femenino , Humanos , Embarazo , Presión Sanguínea , Cardiomiopatías/complicaciones , Cardiomiopatías/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Taquicardia/complicaciones , Taquicardia/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Perfilación de la Expresión Génica
6.
Dev Cell ; 58(23): 2666-2683.e9, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37875116

RESUMEN

Mutations in the degradative ubiquitin ligase anaphase-promoting complex (APC) alter neurodevelopment by impairing proteasomal protein clearance, but our understanding of their molecular and cellular pathogenesis remains limited. Here, we employ the proteomic-based discovery of APC substrates in APC mutant mouse brain and human cell lines and identify the chromosome-passenger complex (CPC), topoisomerase 2a (Top2a), and Ki-67 as major chromatin factors targeted by the APC during neuronal differentiation. These substrates accumulate in phosphorylated form, suggesting that they fail to be eliminated after mitosis during terminal differentiation. The accumulation of the CPC kinase Aurora B within constitutive heterochromatin and hyperphosphorylation of its target histone 3 are corrected in the mutant brain by pharmacologic Aurora B inhibition. Surprisingly, the reduction of Ki-67, but not H3S10ph, rescued the function of constitutive heterochromatin in APC mutant neurons. These results expand our understanding of how ubiquitin signaling regulates chromatin during neurodevelopment and identify potential therapeutic targets in APC-related disorders.


Asunto(s)
Anafase , Cromatina , Ratones , Animales , Humanos , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Heterocromatina , Fosfoproteínas/metabolismo , Antígeno Ki-67/metabolismo , Proteómica , Ubiquitinación , Mitosis , Ubiquitina/metabolismo , Proteínas de Ciclo Celular/metabolismo
7.
iScience ; 26(10): 108046, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37829201

RESUMEN

Extracellular vesicles (EVs) can mediate intercellular communication, including signaling between the placenta and maternal tissues. Human placental explant culture is a versatile in vitro model system to investigate placental function. We performed systematic studies in different tissue culture media types and oxygen tensions to identify a defined serum-free culture condition that supports high trophoblast viability and metabolism, as well as the release of similar populations of EVs, compared to traditional undefined conditions that contain media additives potentially contaminated with exogenous EVs. We also determined the time frame in which trophoblast viability and functionality remain optimal. Multiplex vesicle flow cytometry with classical EV and placenta-specific markers revealed three separate populations of explant-derived EVs: small CD63+ EVs; large PLAP+ EVs; and CD63-/PLAP- EVs. These culture and analytical approaches will enable in vitro modeling of short-term effects of environmental perturbations associated with pregnancy complications on placental function and EV release.

8.
PLoS Pathog ; 19(9): e1011487, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37747931

RESUMEN

Select prion diseases are characterized by widespread cerebral plaque-like deposits of amyloid fibrils enriched in heparan sulfate (HS), a abundant extracellular matrix component. HS facilitates fibril formation in vitro, yet how HS impacts fibrillar plaque growth within the brain is unclear. Here we found that prion-bound HS chains are highly sulfated, and that the sulfation is essential for accelerating prion conversion in vitro. Using conditional knockout mice to deplete the HS sulfation enzyme, Ndst1 (N-deacetylase / N-sulfotransferase) from neurons or astrocytes, we investigated how reducing HS sulfation impacts survival and prion aggregate distribution during a prion infection. Neuronal Ndst1-depleted mice survived longer and showed fewer and smaller parenchymal plaques, shorter fibrils, and increased vascular amyloid, consistent with enhanced aggregate transit toward perivascular drainage channels. The prolonged survival was strain-dependent, affecting mice infected with extracellular, plaque-forming, but not membrane bound, prions. Live PET imaging revealed rapid clearance of recombinant prion protein monomers into the CSF of neuronal Ndst1- deficient mice, neuronal, further suggesting that HS sulfate groups hinder transit of extracellular prion protein monomers. Our results directly show how a host cofactor slows the spread of prion protein through the extracellular space and identify an enzyme to target to facilitate aggregate clearance.


Asunto(s)
Neuronas , Enfermedades por Prión , Priones , Sulfotransferasas , Animales , Ratones , Heparitina Sulfato/metabolismo , Ratones Noqueados , Neuronas/enzimología , Enfermedades por Prión/metabolismo , Proteínas Priónicas/genética , Priones/metabolismo , Sulfotransferasas/genética , Sulfotransferasas/metabolismo
9.
Acta Neuropathol Commun ; 11(1): 152, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737191

RESUMEN

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repetitive head trauma. Brain pathology in CTE is characterized by neuronal loss, gliosis, and a distinctive pattern of neuronal accumulation of hyper-phosphorylated tau (p-tau) and phospho-TDP43 (p-TDP43). Visual anomalies have been reported by patients with CTE, but the ocular pathology underlying these symptoms is unknown. We evaluated retinal pathology in post-mortem eyes collected from 8 contact sport athletes with brain autopsy-confirmed stage IV CTE and compared their findings to retinas from 8 control patients without CTE and with no known history of head injury. Pupil-optic nerve cross sections were prepared and stained with hematoxylin and eosin (H&E), p-tau, p-TDP43, and total TDP43 by immunohistochemistry. No significant retinal degeneration was observed in CTE eyes compared to control eyes by H&E. Strong cytoplasmic p-TDP43 and total TDP43 staining was found in 6/8 CTE eyes in a subset of inner nuclear layer interneurons (INL) of the retina, while only 1/8 control eyes showed similar p-TDP43 pathology. The morphology and location of these inner nuclear layer interneurons were most compatible with retinal horizontal cells, although other retinal cell types present in INL could not be ruled out. No p-tau pathology was observed in CTE or control retinas. These findings identify novel retinal TDP43 pathology in CTE retinas and support further investigation into the role of p-TDP43 in producing visual deficits in patients with CTE.


Asunto(s)
Encefalopatía Traumática Crónica , Traumatismos Craneocerebrales , Enfermedades Neurodegenerativas , Degeneración Retiniana , Humanos , Retina , Encéfalo , Eosina Amarillenta-(YS)
10.
Cell Rep ; 42(8): 112956, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37561625

RESUMEN

Alzheimer's disease (AD) is the most prevalent cause of dementia; microglia have been implicated in AD pathogenesis, but their role is still matter of debate. Our study showed that single systemic wild-type (WT) hematopoietic stem and progenitor cell (HSPC) transplantation rescued the AD phenotype in 5xFAD mice and that transplantation may prevent microglia activation. Indeed, complete prevention of memory loss and neurocognitive impairment and decrease of ß-amyloid plaques in the hippocampus and cortex were observed in the WT HSPC-transplanted 5xFAD mice compared with untreated 5xFAD mice and with mice transplanted with 5xFAD HSPCs. Neuroinflammation was also significantly reduced. Transcriptomic analysis revealed a significant decrease in gene expression related to "disease-associated microglia" in the cortex and "neurodegeneration-associated endothelial cells" in the hippocampus of the WT HSPC-transplanted 5xFAD mice compared with diseased controls. This work shows that HSPC transplant has the potential to prevent AD-associated complications and represents a promising therapeutic avenue for this disease.


Asunto(s)
Enfermedad de Alzheimer , Trasplante de Células Madre Hematopoyéticas , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Células Endoteliales/metabolismo , Ratones Transgénicos , Péptidos beta-Amiloides/metabolismo , Microglía/metabolismo , Fenotipo , Modelos Animales de Enfermedad
11.
J Neurosci ; 43(21): 3970-3984, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37019623

RESUMEN

Endolysosomal defects in neurons are central to the pathogenesis of prion and other neurodegenerative disorders. In prion disease, prion oligomers traffic through the multivesicular body (MVB) and are routed for degradation in lysosomes or for release in exosomes, yet how prions impact proteostatic pathways is unclear. We found that prion-affected human and mouse brain showed a marked reduction in Hrs and STAM1 (ESCRT-0), which route ubiquitinated membrane proteins from early endosomes into MVBs. To determine how the reduction in ESCRT-0 impacts prion conversion and cellular toxicity in vivo, we prion-challenged conditional knockout mice (male and female) having Hrs deleted from neurons, astrocytes, or microglia. The neuronal, but not astrocytic or microglial, Hrs-depleted mice showed a shortened survival and an acceleration in synaptic derangements, including an accumulation of ubiquitinated proteins, deregulation of phosphorylated AMPA and metabotropic glutamate receptors, and profoundly altered synaptic structure, all of which occurred later in the prion-infected control mice. Finally, we found that neuronal Hrs (nHrs) depletion increased surface levels of the cellular prion protein, PrPC, which may contribute to the rapidly advancing disease through neurotoxic signaling. Taken together, the reduced Hrs in the prion-affected brain hampers ubiquitinated protein clearance at the synapse, exacerbates postsynaptic glutamate receptor deregulation, and accelerates neurodegeneration.SIGNIFICANCE STATEMENT Prion diseases are rapidly progressive neurodegenerative disorders characterized by prion aggregate spread through the central nervous system. Early disease features include ubiquitinated protein accumulation and synapse loss. Here, we investigate how prion aggregates alter ubiquitinated protein clearance pathways (ESCRT) in mouse and human prion-infected brain, discovering a marked reduction in Hrs. Using a prion-infection mouse model with neuronal Hrs (nHrs) depleted, we show that low neuronal Hrs is detrimental and markedly shortens survival time while accelerating synaptic derangements, including ubiquitinated protein accumulation, indicating that Hrs loss exacerbates prion disease progression. Additionally, Hrs depletion increases the surface distribution of prion protein (PrPC), linked to aggregate-induced neurotoxic signaling, suggesting that Hrs loss in prion disease accelerates disease through enhancing PrPC-mediated neurotoxic signaling.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedades por Prión , Priones , Masculino , Femenino , Ratones , Humanos , Animales , Priones/metabolismo , Proteínas Priónicas/metabolismo , Receptores AMPA/metabolismo , Neuronas/metabolismo , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Enfermedades Neurodegenerativas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo
12.
Mod Pathol ; 36(2): 100035, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36853788

RESUMEN

Preeclampsia (PE) is a heterogeneous disease for which the current clinical classification system is based on the presence or absence of specific clinical features. PE-associated placentas also show heterogeneous findings on pathologic examination, suggesting that further subclassification is possible. We combined clinical, pathologic, immunohistochemical, and transcriptomic profiling of placentas to develop integrated signatures for multiple subclasses of PE. In total, 303 PE and 1388 nonhypertensive control placentas were included. We found that maternal vascular malperfusion (MVM) in the placenta was associated with preterm PE with severe features and with small-for-gestational-age neonates. Interestingly, PE placentas with either MVM or no histologic pattern of injury showed a linear decrease in proliferative (p63+) cytotrophoblast per villous area with increasing gestational age, similar to placentas obtained from the nonhypertensive patient cohort; however, PE placentas with fetal vascular malperfusion or villitis of unknown etiology lost this phenotype. This is mainly because of cases of fetal vascular malperfusion in placentas of patients with preterm PE and villitis of unknown etiology in placentas of patients with term PE, which are associated with a decrease or increase, respectively, in the cytotrophoblast per villous area. Finally, a transcriptomic analysis identified pathways associated with hypoxia, inflammation, and reduced cell proliferation in PE-MVM placentas and further subclassified this group into extravillous trophoblast-high and extravillous trophoblast-low PE, confirmed using an immunohistochemical analysis of trophoblast lineage-specific markers. Our findings suggest that within specific histopathologic patterns of placental injury, PE can be subclassified based on specific cellular and molecular defects, allowing the identification of pathways that may be targeted for diagnostic and therapeutic purposes.


Asunto(s)
Patología Clínica , Preeclampsia , Femenino , Embarazo , Humanos , Trofoblastos , Placenta , Preeclampsia/genética , Transcriptoma
13.
Stem Cells Dev ; 32(9-10): 225-236, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36803114

RESUMEN

SARS-CoV-2 infection during pregnancy has been associated with poor maternal and neonatal outcomes and placental defects. The placenta, which acts as a physical and immunological barrier at the maternal-fetal interface, is not established until the end of the first trimester. Therefore, localized viral infection of the trophoblast compartment early in gestation could trigger an inflammatory response resulting in altered placental function and consequent suboptimal conditions for fetal growth and development. In this study, we investigated the effect of SARS-CoV-2 infection in early gestation placentae using placenta-derived human trophoblast stem cells (TSCs), a novel in vitro model, and their extravillous trophoblast (EVT) and syncytiotrophoblast (STB) derivatives. SARS-CoV-2 was able to productively replicate in TSC-derived STB and EVT, but not undifferentiated TSCs, which is consistent with the expression of SARS-CoV-2 entry host factors, ACE2 (angiotensin-converting enzyme 2) and TMPRSS2 (transmembrane cellular serine protease) in these cells. In addition, both TSC-derived EVT and STB infected with SARS-CoV-2 elicited an interferon-mediated innate immune response. Combined, these results suggest that placenta-derived TSCs are a robust in vitro model to investigate the effect of SARS-CoV-2 infection in the trophoblast compartment of the early placenta and that SARS-CoV-2 infection in early gestation activates the innate immune response and inflammation pathways. Therefore, placental development could be adversely affected by early SARS-CoV-2 infection by directly infecting the developing differentiated trophoblast compartment, posing a higher risk for poor pregnancy outcomes.


Asunto(s)
COVID-19 , SARS-CoV-2 , Recién Nacido , Embarazo , Femenino , Humanos , COVID-19/metabolismo , Trofoblastos/metabolismo , Interferones , Placenta
14.
Neurol Genet ; 9(1): e200037, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36644447

RESUMEN

Background and Objectives: Missense variants of the valosin-containing protein (VCP) gene cause a progressive, autosomal dominant disease termed VCP multisystem proteinopathy (MSP1). The disease is a constellation of clinical features including inclusion body myopathy (IBM), Paget disease of bone (PDB), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS), typically reported at a frequency of 90%, 42%, 30%, and 9%, respectively. The Hispanic population is currently underrepresented in previous reports of VCP myopathy. We expand our genotype-phenotype studies in 5 Hispanic families with the c.476G>A, p.R159H VCP variant. Methods: We report detailed clinical findings of 11 patients in 5 Hispanic families with the c.476G > A, p.R159H VCP variant. In addition, we report frequencies of the main manifestations in 28 additional affected members of the extended family members. We also compared our findings with an existing larger cohort of patients with VCP MSP1. Results: FTD was the most prevalent feature reported, particularly frequent in females. PDB was only seen in 1 patient in contrast to the earlier reported cohorts. The overall frequency of the different manifestations: myopathy, PDB, FTD, and ALS in these 5 families was 39%, 3%, 72%, and 8%, respectively. The atypical phenotype and later onset of manifestations in these families resulted in a noticeable delay in the diagnosis of VCP disease. Discussion: Studying each VCP variant in the context of ethnic backgrounds is pivotal in increasing awareness of the variability of VCP-related diseases across different ethnicities, enabling early diagnosis, and understanding the mechanism for these genotype-phenotype variations.

15.
Nat Commun ; 13(1): 7945, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36572698

RESUMEN

Human cortical organoids, three-dimensional neuronal cultures, are emerging as powerful tools to study brain development and dysfunction. However, whether organoids can functionally connect to a sensory network in vivo has yet to be demonstrated. Here, we combine transparent microelectrode arrays and two-photon imaging for longitudinal, multimodal monitoring of human cortical organoids transplanted into the retrosplenial cortex of adult mice. Two-photon imaging shows vascularization of the transplanted organoid. Visual stimuli evoke electrophysiological responses in the organoid, matching the responses from the surrounding cortex. Increases in multi-unit activity (MUA) and gamma power and phase locking of stimulus-evoked MUA with slow oscillations indicate functional integration between the organoid and the host brain. Immunostaining confirms the presence of human-mouse synapses. Implantation of transparent microelectrodes with organoids serves as a versatile in vivo platform for comprehensive evaluation of the development, maturation, and functional integration of human neuronal networks within the mouse brain.


Asunto(s)
Neuronas , Corteza Visual , Humanos , Animales , Ratones , Neuronas/fisiología , Encéfalo , Prótesis e Implantes , Organoides/trasplante , Corteza Visual/fisiología
16.
J Neuropathol Exp Neurol ; 81(12): 953-964, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36269086

RESUMEN

3R/4R-tau species are found in Alzheimer disease (AD) and ∼50% of Lewy body dementias at autopsy (LBD+tau); 4R-tau accumulations are found in progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). Digital image analysis techniques can elucidate patterns of tau pathology more precisely than traditional methods but repeatability across centers is unclear. We calculated regional percentage areas occupied by tau pathological inclusions from the middle frontal cortex (MFC), superior temporal cortex (STC), and angular gyrus (ANG) from cases from the University of Pennsylvania and the University of California San Diego with AD, LBD+tau, PSP, or CBD (n = 150) using QuPath. In both cohorts, AD and LBD+tau had the highest grey and white matter tau burden in the STC (p ≤ 0.04). White matter tau burden was relatively higher in 4R-tauopathies than 3R/4R-tauopathies (p < 0.003). Grey and white matter tau were correlated in all diseases (R2=0.43-0.79, p < 0.04) with the greatest increase of white matter per unit grey matter tau observed in PSP (p < 0.02 both cohorts). Grey matter tau negatively correlated with MMSE in AD and LBD+tau (r = -4.4 to -5.4, p ≤ 0.02). These data demonstrate the feasibility of cross-institutional digital histology studies that generate finely grained measurements of pathology which can be used to support biomarker development and models of disease progression.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Neocórtex , Parálisis Supranuclear Progresiva , Tauopatías , Sustancia Blanca , Humanos , Proteínas tau/metabolismo , Sustancia Blanca/patología , Neocórtex/patología , Tauopatías/patología , Enfermedad de Alzheimer/patología , Parálisis Supranuclear Progresiva/patología , Enfermedad por Cuerpos de Lewy/patología
18.
Neurobiol Dis ; 172: 105834, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35905927

RESUMEN

Synapse dysfunction and loss are central features of neurodegenerative diseases, caused in part by the accumulation of protein oligomers. Amyloid-ß, tau, prion, and α-synuclein oligomers bind to the cellular prion protein (PrPC), resulting in the activation of macromolecular complexes and signaling at the post-synapse, yet the early signaling events are unclear. Here we sought to determine the early transcript and protein alterations in the hippocampus during the pre-clinical stages of prion disease. We used a transcriptomic approach focused on the early-stage, prion-infected hippocampus of male wild-type mice, and identify immediate early genes, including the synaptic activity response gene, Arc/Arg3.1, as significantly upregulated. In a longitudinal study of male, prion-infected mice, Arc/Arg-3.1 protein was increased early (40% of the incubation period), and by mid-disease (pre-clinical), phosphorylated AMPA receptors (pGluA1-S845) were increased and metabotropic glutamate receptors (mGluR5 dimers) were markedly reduced in the hippocampus. Notably, sporadic Creutzfeldt-Jakob disease (sCJD) post-mortem cortical samples also showed low levels of mGluR5 dimers. Together, these findings suggest that prions trigger an early Arc response, followed by an increase in phosphorylated GluA1 and a reduction in mGluR5 receptors.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Priones , Péptidos beta-Amiloides/metabolismo , Animales , Síndrome de Creutzfeldt-Jakob/metabolismo , Hipocampo/metabolismo , Estudios Longitudinales , Masculino , Ratones , Priones/metabolismo
19.
Ann Neurol ; 92(3): 425-438, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35696592

RESUMEN

OBJECTIVE: Primary age-related tauopathy (PART) refers to tau neurofibrillary tangles restricted largely to the medial temporal lobe in the absence of significant beta-amyloid plaques. PART has been associated with cognitive impairment, but contributions from concomitant limbic age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) are underappreciated. METHODS: We compare prevalence of LATE-NC and vascular copathologies in age- and Braak-matched patients with PART (n = 45, Braak stage I-IV, Thal phase 0-2) or early stage Alzheimer disease neuropathologic change (ADNC; n = 51, Braak I-IV, Thal 3-5), and examine their influence on clinical and cognitive decline. RESULTS: Concomitant LATE-NC and vascular pathology were equally common, and cognition was equally impaired, in PART (Mini-Mental State Examination [MMSE] = 24.8 ± 6.9) and ADNC (MMSE = 24.2 ± 6.0). Patients with LATE-NC were more impaired than those without LATE-NC on the MMSE (by 5.8 points, 95% confidence interval [CI] = 3.0-8.6), Mattis Dementia Rating Scale (DRS; 17.5 points, 95% CI = 7.1-27.9), Clinical Dementia Rating, sum of boxes scale (CDR-sob; 5.2 points, 95% CI = 2.1-8.2), memory composite (0.8 standard deviations [SD], 95% CI = 0.1-1.6), and language composite (1.1 SD, 95% CI = 0.2-2.0), and more likely to receive a dementia diagnosis (odds ratio = 4.8, 95% CI = 1.5-18.0). Those with vascular pathology performed worse than those without on the DRS (by 10.2 points, 95% CI = 0.1-20.3) and executive composite (1.3 SD, 95% CI = 0.3-2.3). Cognition declined similarly in PART and ADNC over the 5 years preceding death; however, LATE-NC was associated with more rapid decline on the MMSE (ß = 1.9, 95% CI = 0.9-3.0), DRS (ß = 7.8, 95% CI = 3.4-12.7), CDR-sob (ß = 1.9, 95% CI = 0.4-3.7), language composite (ß = 0.5 SD, 95% CI = 0.1-0.8), and vascular pathology with more rapid decline on the DRS (ß = 5.2, 95% CI = 0.6-10.2). INTERPRETATION: LATE-NC, and to a lesser extent vascular copathology, exacerbate cognitive impairment and decline in PART and early stage ADNC. ANN NEUROL 2022;92:425-438.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Tauopatías , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/patología , Proteínas de Unión al ADN , Humanos , Ovillos Neurofibrilares/patología , Placa Amiloide/patología , Tauopatías/patología
20.
Nat Cell Biol ; 24(6): 954-967, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35637408

RESUMEN

Epidemiological studies demonstrate an association between breast cancer (BC) and systemic dysregulation of glucose metabolism. However, how BC influences glucose homeostasis remains unknown. We show that BC-derived extracellular vesicles (EVs) suppress pancreatic insulin secretion to impair glucose homeostasis. EV-encapsulated miR-122 targets PKM in ß-cells to suppress glycolysis and ATP-dependent insulin exocytosis. Mice receiving high-miR-122 EVs or bearing BC tumours exhibit suppressed insulin secretion, enhanced endogenous glucose production, impaired glucose tolerance and fasting hyperglycaemia. These effects contribute to tumour growth and are abolished by inhibiting EV secretion or miR-122, restoring PKM in ß-cells or supplementing insulin. Compared with non-cancer controls, patients with BC have higher levels of circulating EV-encapsulated miR-122 and fasting glucose concentrations but lower fasting insulin; miR-122 levels are positively associated with glucose and negatively associated with insulin. Therefore, EV-mediated impairment of whole-body glycaemic control may contribute to tumour progression and incidence of type 2 diabetes in some patients with BC.


Asunto(s)
Neoplasias de la Mama , Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , MicroARNs , Animales , Neoplasias de la Mama/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Vesículas Extracelulares/metabolismo , Femenino , Glucosa/metabolismo , Homeostasis , Humanos , Insulina/metabolismo , Secreción de Insulina , Ratones , MicroARNs/genética , MicroARNs/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...